Hashing, Episode 2: Multiple-choice hashing

Rasmus Pagh IT University of Copenhagen

MADALGO SUMMER SCHOOL ON DATA STRUCTURES 2013

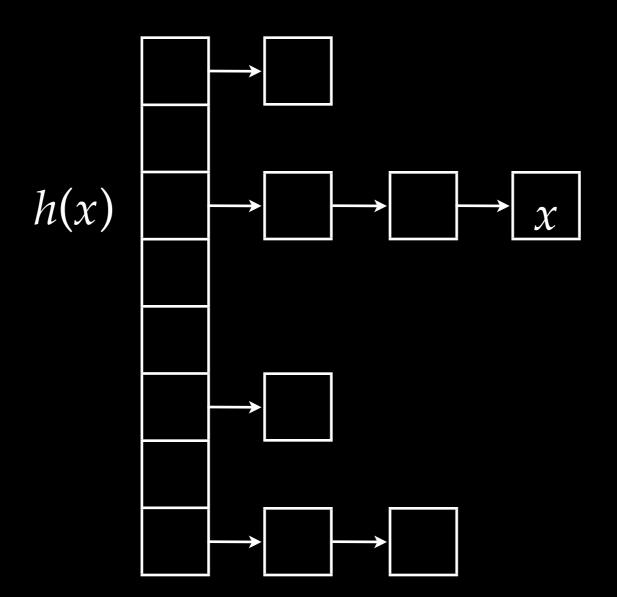
Today: Choice is good!

- In which hash table do you feel most welcome?
- Peeling leaves from trees in random graphs.
- Hash tables without keys.

Topics

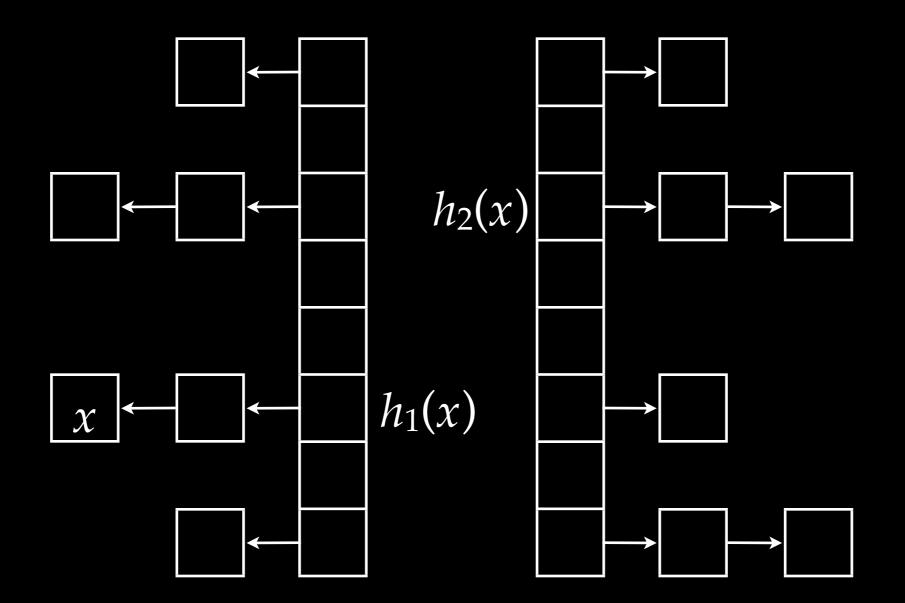
- Two-choice hashing.
- Cuckoo hashing.
- Storing (key,value) pairs without storing any keys.

Chained hashing



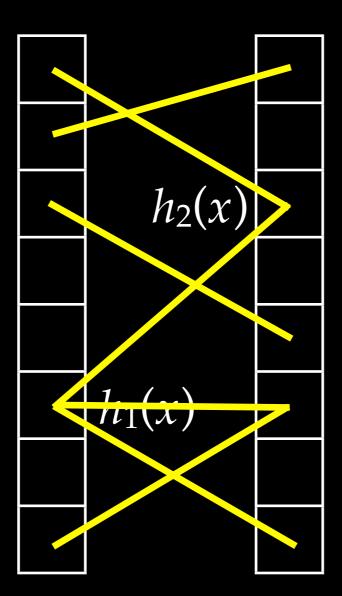
Max search time ~ $\log(n)/\log\log(n)$

Two-choice chaining



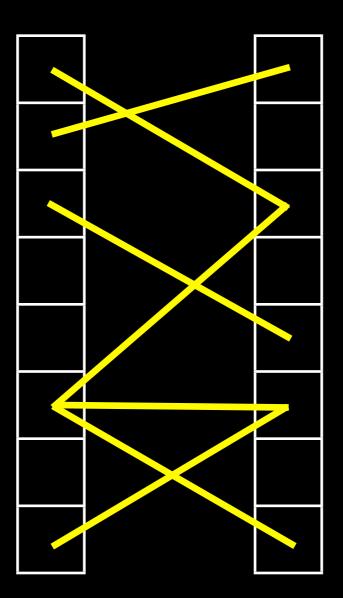
Max search time ~ $\log \log(n)$!

Choice graph



 $E = \{ \{ h_1(x), h_2(x) \} \mid x \in S \}$

Choice graph



What is the highest load we could possibly get?

Choice graph

 $E = \{\{h_1(x), h_2(x)\} \mid x \in S\}$

Lemma. If E is acyclic, the maximum bucket size in a connected component $C \subseteq E$ is bounded by $\lceil \log_2(|C|+1) \rceil$.

How large connected components do we expect? Are all components (close to) being trees?

Random graph theory

- Some answers: random hash functions
 - Largest component *either* has O(log *n*) *or* θ(*n*) edges, whp. (*n* = | *E* |)
 Depends on whether *n*/*r* exceeds a certain *threshold*.
 - Below the threshold components are all pseudotrees (trees + 1 edge) whp., and have average constant size.

Below the threshold

- We argue that r > 2.1n suffices.
- 1st step: Connected components are small.

Lemma. The expected number of vertices in the choice graph at distance ℓ from a given vertex u is at most $(2n/r)^{\ell}$.

Consequences of lemma

- With high probability, all components have size O(log *n*).
- The average component size is O(1).

Lemma. For r > 2.1n the probability that a connected component of the choice graph with t vertices contains more than t edges is $O(t^4/r^2)$.

More balls, more tables?

- What if we throw *n* balls in *b* < *n* bins?
 - Answer: Max. load $n/b+O(\log \log n)$.
- What if we use *d* > 2 hash functions?
 - Answer: Depending on tie-breaking rule
 max. load O(log_d log n) or O((log log n)/d)

Choice graph becomes hypergraph

Many more tables?

- Curiosity:
 If S⊆U and we use O(log | U |) hash fct.,
 the error probability can be made *zero*!
- Caveat:

No known good construction of the deterministic hash functions (= an unbalanced expander).

Cuckoo hashing

- Answer to a natural question: *"Can we reduce maximum query time by moving keys between the tables?"*
- Lemma: If the choice graph consists of trees and pseudotrees, it is possible to place the keys with 1 key per bucket.

Cuckoo approach to getting a nest

procedure insert(x)pos $\leftarrow h_1(x);$ **loop** n times { if T[pos] = NULL then $\{ T[pos] \leftarrow x; return \};$ $x \leftrightarrow T[\text{pos}];$ if $pos = h_1(x)$ then $pos \leftarrow h_2(x)$ else $pos \leftarrow h_1(x);$ rehash(); insert(x)end

Cuckoo hashing analysis

- Assume r > 2.1n so lemma holds whp.
- Failure probability = 1 - probability of pseudotree = $\tilde{O}(1/r^2)$.
- Expected insertion time
 = size of connected component
 = O(1).

Generalized cuckoo hashing

• *d* > 2 hash functions - much fuller table:

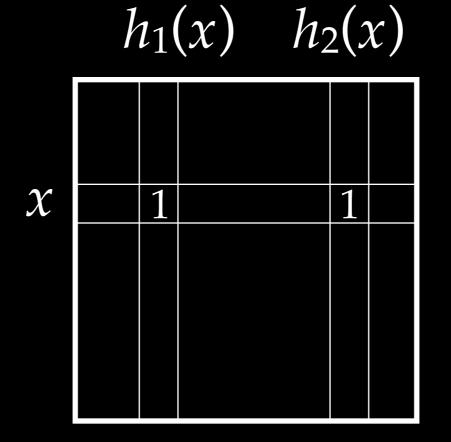
d	2	3	4	5	6
α	0.500	0.917	0.976	0.992	0.997

• *b* > 1 keys in each position - similar effect:

b 1	2	3	4	5	6
α 0.50	0.897	0.959	0.980	0.989	0.994
	\sim				
	Ope	n prob			
	Efficie	nt inse			

Choice matrix

• The choice graph as a sparse 0-1 matrix:



Row v_x = the set of hash values of a key x.
 Generalizes to k > 2 hash functions.

Choice matrix properties

- Lemma: If the choice graph is acyclic, the choice matrix *A* has full rank (in any field).
- **Proof**: The linear system *Ay=b* can be solved greedily by *peeling* nodes/variables.

 Ratio r/n needed for peelability: 								
k 2	3	4	5	6	7			
r/n 2.000	1.222	1.295	1.425	1.570	1.721			

Retrieval

• Problem:

Given keys $x_1,...,x_n$ and values $b_1,...,b_n$. Store a function f that such that $f(x_i)=b_i$.

• Solution:

- Choose h_1, h_2 so that A has full rank.
- Solve the linear system *Ay*=*b*, store *y*.
- Let $f(x) = y_{h_1(x)} + y_{h_2(x)}$

Addition in some group (e.g. bitwise xor, arithmetic mod p)

Retrieval - space usage

- Need to store (3 hash functions):
 - The vector *y* of 1.23 *n* values.
 - Description of the hash functions.
- No space needed for storing $x_1, ..., x_n!$
- By increasing the number of hash functions, the size of *y* can be made arbitrarily close to *n*.

Application:

Approximate membership

- Let s(x) be a $\log_2(1/\epsilon)$ -bit signature of x.
- Create retrieval function f with $f(x_i)=s(x_i)$.
- Return 'yes' on input x iff f(x)=s(x).
- With ≥ 3 hash functions this uses less space than Bloom filters.

Some open questions

- An elementary analysis of the "heavily loaded case" of 2-choice chaining.
- Analyzing the insertion time for cuckoo hashing generalizations (several algorithms, average and worst-case bounds).
- Good unbalanced expander graphs.

Some references

- Azar et al.: Balanced Allocations <u>http://www.cs.tau.ac.il/~azar/box.pdf</u>
- Pagh and Rodler: Cuckoo Hashing <u>http://www.itu.dk/people/pagh/papers/cuckoo-jour.pdf</u>
- Dietzfelbinger and Weidling: Balanced allocation and dictionaries with tightly packed constant size bins <u>http://dl.acm.org/citation.cfm?id=1244728</u>
- Dietzfelbinger and Pagh: Succinct Data Structures for Retrieval and Approximate Membership <u>http://www.itu.dk/people/pagh/papers/bloomier.pdf</u>
- Mitzenmacher: Some open problems related to cuckoo hashing <u>http://www.eecs.harvard.edu/~michaelm/postscripts/esa2009.pdf</u>