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Today: Choice is good!

• In which hash table do you feel most 
welcome?

• Peeling leaves from trees in random 
graphs.

• Hash tables without keys.



Topics

• Two-choice hashing.

• Cuckoo hashing.

• Storing (key,value) pairs without 
storing any keys.



Chained hashing

xh(x)

Max search time ~ log(n)/log log(n)



Two-choice chaining

h2(x)

h1(x)x

Max search time ~ log log(n) !



Choice graph

h2(x)

h1(x)

E = {{h1(x), h2(x)} | x 2 S}



Choice graph

What is the highest load we could possibly get?



Choice graph
E = {{h1(x), h2(x)} | x 2 S}

Lemma. If E is acyclic, the maximum bucket

size in a connected component C ✓ E is bounded

by dlog2(|C| + 1)e.

How large connected components do we expect?
Are all components (close to) being trees?



Random graph theory
• Some answers:

- Largest component either has O(log n) 
or θ(n) edges, whp. (n =|E|)
- Depends on whether n/r exceeds a 
certain threshold.
- Below the threshold components are all 
pseudotrees (trees + 1 edge) whp., and 
have average constant size. 

Assuming highly 
random hash functions



Below the threshold

• We argue that r > 2.1n suffices.

• 1st step: Connected components are small.

Lemma. The expected number of vertices in the

choice graph at distance ` from a given vertex u is

at most (2n/r)`.



Consequences of lemma

• With high probability, all components 
have size O(log n).

• The average component size is O(1).

Lemma. For r > 2.1n the probability that a

connected component of the choice graph with t

vertices contains more than t edges is O(t4/r2).



More balls, more tables?

• What if we throw n balls in b < n bins?

- Answer: Max. load n/b+O(log log n).

• What if we use d > 2 hash functions?

- Answer: Depending on tie-breaking rule 
max. load O(logd log n) or O((log log n)/d)

Choice graph 
becomes hypergraph



Many more tables?

- Curiosity:
If S⊆U and we use O(log|U|) hash fct., 
the error probability can be made zero!

- Caveat:
No known good construction of the 
deterministic hash functions (= an 
unbalanced expander).



Cuckoo hashing

• Answer to a natural question:
“Can we reduce maximum query time by 
moving keys between the tables?”

• Lemma: If the choice graph consists of 
trees and pseudotrees, it is possible to 
place the keys with 1 key per bucket. 



Cuckoo approach to getting a nest

procedure insert(x)

pos  h1(x);

loop n times {
if T [pos] = NULL then { T [pos] x; return};
x$ T [pos];

if pos= h1(x) then pos h2(x) else pos h1(x);}
rehash(); insert(x)

end



Cuckoo hashing analysis
• Assume r > 2.1n so lemma holds whp.

• Failure probability
= 1 - probability of pseudotree
= Õ(1/r2).

• Expected insertion time
= size of connected component
= O(1).



Generalized cuckoo hashing

• d > 2 hash functions - much fuller table:

• b > 1 keys in each position - similar effect:

d
α

b
α

Open problem: 
Efficient insertions



Choice matrix
• The choice graph as a sparse 0-1 matrix:

x

h1(x) h2(x)

1 1

• Row vx = the set of hash values of a key x.
Generalizes to k > 2 hash functions.



Choice matrix properties

• Lemma: If the choice graph is acyclic, the 
choice matrix A has full rank (in any field).

• Proof: The linear system Ay=b can be 
solved greedily by peeling nodes/variables.

• Ratio r/n needed for peelability:
k

r/n



Retrieval
• Problem:

Given keys x1,...,xn and values b1,...,bn.
Store a function f that such that f(xi)=bi.

• Solution:

• Choose h1,h2 so that A has full rank.
• Solve the linear system Ay=b, store y.
• Let 

f(x) = y

h1(x) + y

h2(x)

Addition in some group
(e.g. bitwise xor, arithmetic mod p)



Retrieval - space usage
• Need to store (3 hash functions):

- The vector y of 1.23 n values.

- Description of the hash functions.

• No space needed for storing x1,...,xn!

• By increasing the number of hash 
functions, the size of y can be made 
arbitrarily close to n.



Application:

Approximate membership

• Let s(x) be a log2(1/ε)-bit signature of x.

• Create retrieval function f with f(xi)=s(xi).

• Return ‘yes’ on input x iff f(x)=s(x).

• With ≥ 3 hash functions this uses less 
space than Bloom filters.



Some open questions
• An elementary analysis of the “heavily 

loaded case” of 2-choice chaining.

• Analyzing the insertion time for cuckoo 
hashing generalizations (several 
algorithms, average and worst-case 
bounds).

• Good unbalanced expander graphs.
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• Pagh and Rodler: Cuckoo Hashing
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• Dietzfelbinger and Weidling: Balanced allocation and dictionaries 
with tightly packed constant size bins
http://dl.acm.org/citation.cfm?id=1244728

• Dietzfelbinger and Pagh: Succinct Data Structures for Retrieval and 
Approximate Membership
http://www.itu.dk/people/pagh/papers/bloomier.pdf

• Mitzenmacher: Some open problems related to cuckoo hashing
http://www.eecs.harvard.edu/~michaelm/postscripts/esa2009.pdf 

http://www.cs.tau.ac.il/~azar/box.pdf
http://www.cs.tau.ac.il/~azar/box.pdf
http://www.itu.dk/people/pagh/papers/cuckoo-jour.pdf
http://www.itu.dk/people/pagh/papers/cuckoo-jour.pdf
http://dl.acm.org/citation.cfm?id=1244728
http://dl.acm.org/citation.cfm?id=1244728
http://www.itu.dk/people/pagh/papers/bloomier.pdf
http://www.itu.dk/people/pagh/papers/bloomier.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/esa2009.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/esa2009.pdf

