
Hashing, Episode 2:

Multiple-choice hashing

Rasmus Pagh
IT University of Copenhagen

MADALGO SUMMER SCHOOL ON DATA STRUCTURES 2013

Today: Choice is good!

• In which hash table do you feel most
welcome?

• Peeling leaves from trees in random
graphs.

• Hash tables without keys.

Topics

• Two-choice hashing.

• Cuckoo hashing.

• Storing (key,value) pairs without
storing any keys.

Chained hashing

xh(x)

Max search time ~ log(n)/log log(n)

Two-choice chaining

h2(x)

h1(x)x

Max search time ~ log log(n) !

Choice graph

h2(x)

h1(x)

E = {{h1(x), h2(x)} | x 2 S}

Choice graph

What is the highest load we could possibly get?

Choice graph
E = {{h1(x), h2(x)} | x 2 S}

Lemma. If E is acyclic, the maximum bucket

size in a connected component C ✓ E is bounded

by dlog2(|C| + 1)e.

How large connected components do we expect?
Are all components (close to) being trees?

Random graph theory
• Some answers:

- Largest component either has O(log n)
or θ(n) edges, whp. (n =|E|)
- Depends on whether n/r exceeds a
certain threshold.
- Below the threshold components are all
pseudotrees (trees + 1 edge) whp., and
have average constant size.

Assuming highly
random hash functions

Below the threshold

• We argue that r > 2.1n suffices.

• 1st step: Connected components are small.

Lemma. The expected number of vertices in the

choice graph at distance ` from a given vertex u is

at most (2n/r)`.

Consequences of lemma

• With high probability, all components
have size O(log n).

• The average component size is O(1).

Lemma. For r > 2.1n the probability that a

connected component of the choice graph with t

vertices contains more than t edges is O(t4/r2).

More balls, more tables?

• What if we throw n balls in b < n bins?

- Answer: Max. load n/b+O(log log n).

• What if we use d > 2 hash functions?

- Answer: Depending on tie-breaking rule
max. load O(logd log n) or O((log log n)/d)

Choice graph
becomes hypergraph

Many more tables?

- Curiosity:
If S⊆U and we use O(log|U|) hash fct.,
the error probability can be made zero!

- Caveat:
No known good construction of the
deterministic hash functions (= an
unbalanced expander).

Cuckoo hashing

• Answer to a natural question:
“Can we reduce maximum query time by
moving keys between the tables?”

• Lemma: If the choice graph consists of
trees and pseudotrees, it is possible to
place the keys with 1 key per bucket.

Cuckoo approach to getting a nest

procedure insert(x)

pos h1(x);

loop n times {
if T [pos] = NULL then { T [pos] x; return};
x$ T [pos];

if pos= h1(x) then pos h2(x) else pos h1(x);}
rehash(); insert(x)

end

Cuckoo hashing analysis
• Assume r > 2.1n so lemma holds whp.

• Failure probability
= 1 - probability of pseudotree
= Õ(1/r2).

• Expected insertion time
= size of connected component
= O(1).

Generalized cuckoo hashing

• d > 2 hash functions - much fuller table:

• b > 1 keys in each position - similar effect:

d
α

b
α

Open problem:
Efficient insertions

Choice matrix
• The choice graph as a sparse 0-1 matrix:

x

h1(x) h2(x)

1 1

• Row vx = the set of hash values of a key x.
Generalizes to k > 2 hash functions.

Choice matrix properties

• Lemma: If the choice graph is acyclic, the
choice matrix A has full rank (in any field).

• Proof: The linear system Ay=b can be
solved greedily by peeling nodes/variables.

• Ratio r/n needed for peelability:
k

r/n

Retrieval
• Problem:

Given keys x1,...,xn and values b1,...,bn.
Store a function f that such that f(xi)=bi.

• Solution:

• Choose h1,h2 so that A has full rank.
• Solve the linear system Ay=b, store y.
• Let

f(x) = y

h1(x) + y

h2(x)

Addition in some group
(e.g. bitwise xor, arithmetic mod p)

Retrieval - space usage
• Need to store (3 hash functions):

- The vector y of 1.23 n values.

- Description of the hash functions.

• No space needed for storing x1,...,xn!

• By increasing the number of hash
functions, the size of y can be made
arbitrarily close to n.

Application:

Approximate membership

• Let s(x) be a log2(1/ε)-bit signature of x.

• Create retrieval function f with f(xi)=s(xi).

• Return ‘yes’ on input x iff f(x)=s(x).

• With ≥ 3 hash functions this uses less
space than Bloom filters.

Some open questions
• An elementary analysis of the “heavily

loaded case” of 2-choice chaining.

• Analyzing the insertion time for cuckoo
hashing generalizations (several
algorithms, average and worst-case
bounds).

• Good unbalanced expander graphs.

Some references
• Azar et al.: Balanced Allocations

http://www.cs.tau.ac.il/~azar/box.pdf

• Pagh and Rodler: Cuckoo Hashing
http://www.itu.dk/people/pagh/papers/cuckoo-jour.pdf

• Dietzfelbinger and Weidling: Balanced allocation and dictionaries
with tightly packed constant size bins
http://dl.acm.org/citation.cfm?id=1244728

• Dietzfelbinger and Pagh: Succinct Data Structures for Retrieval and
Approximate Membership
http://www.itu.dk/people/pagh/papers/bloomier.pdf

• Mitzenmacher: Some open problems related to cuckoo hashing
http://www.eecs.harvard.edu/~michaelm/postscripts/esa2009.pdf

http://www.cs.tau.ac.il/~azar/box.pdf
http://www.cs.tau.ac.il/~azar/box.pdf
http://www.itu.dk/people/pagh/papers/cuckoo-jour.pdf
http://www.itu.dk/people/pagh/papers/cuckoo-jour.pdf
http://dl.acm.org/citation.cfm?id=1244728
http://dl.acm.org/citation.cfm?id=1244728
http://www.itu.dk/people/pagh/papers/bloomier.pdf
http://www.itu.dk/people/pagh/papers/bloomier.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/esa2009.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/esa2009.pdf

